USB-1616HS-BNC
High-Speed Analog I/O and Digital I/O

User's Guide
Trademark and Copyright Information

Measurement Computing Corporation, InstaCal, Universal Library, and the Measurement Computing logo are either trademarks or registered trademarks of Measurement Computing Corporation. Refer to the Copyrights & Trademarks section on mccdaq.com/legal for more information about Measurement Computing trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

© 2012 Measurement Computing Corporation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Measurement Computing Corporation.

Notice

Measurement Computing Corporation does not authorize any Measurement Computing Corporation product for use in life support systems and/or devices without prior written consent from Measurement Computing Corporation. Life support devices/systems are devices or systems that, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corporation products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.
Table of Contents

Preface

About this User’s Guide ... 5

- What you will learn from this user’s guide ... 5
- Conventions in this user’s guide ... 5
- Where to find more information ... 5

Chapter 1

Introducing the USB-1616HS-BNC .. 6

- Overview: USB-1616HS-BNC features .. 6

Chapter 2

Installing the USB-1616HS-BNC .. 7

- What comes with your USB-1616HS-BNC shipment? 7
- Hardware ... 7
- Optional components ... 8
- Additional documentation ... 8
- Unpacking the USB-1616HS-BNC ... 8
- Installing the software .. 8
- Installing the hardware ... 8
- Configuring the hardware ... 9
- Connecting the board for I/O operations .. 9
- Connectors, cables – main I/O connector ... 9
- DSUB37F connector .. 10
- Cabling ... 11
- Field wiring and signal termination accessories 11

Chapter 3

Functional Details ... 12

- USB-1616HS-BNC components ... 12
- USB-1616HS-BNC block diagram .. 13
- Synchronous I/O – mixing analog, digital, and counter scanning 13
- Analog input ... 13
- Analog input scanning ... 13
- Analog output ... 15
- Example: Analog channel scanning of voltage inputs and streaming analog outputs .. 16
- Digital I/O .. 16
- Digital input scanning .. 16
- Digital outputs and pattern generation .. 17
- Triggering ... 17
- Hardware analog triggering ... 17
- Digital triggering ... 17
- Software-based triggering ... 18
- Stop trigger modes .. 18
- Pre-triggering and post-triggering modes .. 18
- Counter inputs .. 19
- Tips for making high-speed counter measurements (> 1 MHz) 19
- Mapped channels .. 19
- Counter modes .. 19
- Debounce modes ... 20
- Encoder mode .. 23
- Timer outputs ... 26
- Example: Timer outputs ... 26
Using detection setpoints for output control ... 27
What are detection setpoints? ... 27
Setpoint configuration overview .. 27
Setpoint configuration .. 28
Using the setpoint status register ... 29
Examples of control outputs ... 29
Detection setpoint details .. 33
DAC or timer update latency ... 33

Chapter 4
Calibrating the USB-1616HS-BNC ... 35

Chapter 5
Specifications ... 36
Analog input ... 36
Accuracy ... 36
Analog outputs ... 37
Digital input/output ... 38
Counters ... 38
Input sequencer .. 39
 External acquisition scan clock ... 39
Triggering ... 40
Frequency/pulse generators ... 40
Power consumption .. 40
External power ... 40
USB specifications .. 41
Environmental ... 41
Mechanical .. 41
Signal I/O connectors and pin out ... 41

Declaration of Conformity ... 43
About this User's Guide

What you will learn from this user's guide

This user's guide explains how to install, configure, and use the USB-1616HS-BNC so that you get the most out of its analog input, digital I/O, and counter/timer I/O features.

This user's guide also refers you to related documents available on our web site and to technical support resources.

Conventions in this user's guide

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution!</td>
<td>Shaded caution statements present information to help you avoid injuring yourself and others, damaging your hardware, or losing your data.</td>
</tr>
<tr>
<td>bold text</td>
<td>Bold text is used for the names of objects on the screen, such as buttons, text boxes, and check boxes.</td>
</tr>
<tr>
<td>italic text</td>
<td>Italic text is used for the names of manuals and help topic titles, and to emphasize a word or phrase.</td>
</tr>
</tbody>
</table>

Where to find more information

For additional information relevant to the operation of your hardware, refer to the Documents subdirectory where you installed the MCC DAQ software (C:\Program Files\Measurement Computing\DAQ by default), or search for your device on our website at www.mccdaq.com.
Chapter 1

Introducing the USB-1616HS-BNC

Overview: USB-1616HS-BNC features

The USB-1616HS-BNC is supported under popular Microsoft® Windows® operating systems. The USB-1616HS-BNC board is a multifunction measurement and control board designed for the USB bus.

Through its front-panel BNC connectors, the USB-1616HS-BNC provides 16 differential analog inputs with 16-bit resolution. It offers seven software-selectable analog input ranges of ±10 V, ±5 V, ±2 V, ±1 V, ±0.5 V, ±0.2 V, and ±0.1 V.

Through its 37-pin DSUB connectors, the USB-1616HS-BNC provides:

- two 16-bit, 1 MHz analog output channels with an output range of -10 V to +10 V
- 16 high-speed lines of digital I/O
- two timer outputs
- four 32-bit counters.

The USB-1616HS-BNC provides up to 4 MHz scanning on all digital input lines\(^1\).

You can operate all analog I/O, digital I/O, and counter/timer I/O synchronously.

\(^1\) Higher rates—up to 12 MHz—are possible depending on the platform and the amount of data being transferred.
Installing the USB-1616HS-BNC

What comes with your USB-1616HS-BNC shipment?

As you unpack your USB-1616HS-BNC, verify that the following components are included.

Hardware

- USB-1616HS-BNC

- USB cable (2-meter length)

- TR-2U power supply and CA-1* line cord
 AC-to-DC conversion power supply and cord plugs into the external power connector of the USB-1616HS-BNC.

* European customers: Contact Measurement Computing to order the CA-261 line cord for your region.
Optional components

If you ordered any of the following products with your USB-1616HS-BNC, they should be included with your shipment.

- C37FM-x cable
- Signal conditioning accessories

Measurement Computing provides signal termination products for use with the USB-1616HS-BNC. Refer to the "Field wiring and signal termination accessories" section on page 11 for a complete list of compatible accessory products.

Additional documentation

In addition to this hardware user's guide, you should also receive the Quick Start Guide (available in PDF at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf). This booklet supplies a brief description of the software you received with your USB-1616HS-BNC and information regarding installation of that software. Please read this booklet completely before installing any software or hardware.

Unpacking the USB-1616HS-BNC

As with any electronic device, you should take care while handling to avoid damage from static electricity. Before removing the USB-1616HS-BNC from its packaging, ground yourself using a wrist strap or by simply touching the computer chassis or other grounded object to eliminate any stored static charge.

If any components are missing or damaged, notify Measurement Computing Corporation immediately by phone, fax, or e-mail:

- Phone: 508-946-5100 and follow the instructions for reaching Tech Support
- Fax: 508-946-9500 to the attention of Tech Support
- Email: techsupport@mccdaq.com

Installing the software

Refer to the Quick Start Guide for instructions on installing the software on the Measurement Computing Data Acquisition Software CD. This booklet is available in PDF at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf.

We recommend that you download the latest Windows Update onto your computer before installing and operating the USB-1616HS-BNC.

Installing the hardware

To connect the USB-1616HS-BNC to your system, turn your computer on, and then do the following:

Refer to the "Specifications" chapter on page 36 of this user’s guide to make sure that the input signals do not exceed the specified limits.

1. Connect the analog inputs to the BNC connectors on the front panel of the USB-1616HS-BNC.
2. Connect the TR-2U external supply or another compatible 6-16 VDC power supply to the USB-1616HS-BNC's external power connector, and plug the other end into a power outlet.
 The USB-1616HS-BNC requires 9 V of external power.
3. Connect the USB cable to the USB-1616HS-BNC USB connector and to a USB port on your computer. A USB2.0 port is recommended—connecting to a USB1.1 port results in lower performance.

When you connect the USB-1616HS-BNC for the first time, a Found New Hardware message opens as the USB-1616HS-BNC is detected. When the message closes, the installation is complete.
The power LED (bottom LED) blinks during device detection and initialization, and then remains solid if properly detected. If not, check if the USB-1616HS-BNC has sufficient power. When the device is first powered on, there is usually a momentary delay before the power LED begins to blink, or come on solid.

Caution! Do not disconnect any device from the USB bus while the computer is communicating with the USB-1616HS-BNC, or you may lose data and/or your ability to communicate with the USB-1616HS-BNC.

Configuring the hardware

All hardware configuration options on the USB-1616HS-BNC are software-controlled. You can select some of the configuration options using InstaCal, such as the edge used for pacing when using an external clock.

Once selected, any program that uses the Universal Library initializes the hardware according to these selections.

Caution! Turn off power to all devices connected to the system before making connections. Electrical shock or damage to equipment can result even under low-voltage conditions.

Information on signal connections

General information regarding signal connection and configuration is available in the Guide to Signal Connections. This document is available on our web site at www.mccdaq.com/signals/signals.pdf.

Caution! Always handle components carefully, and never touch connectors or circuit components unless you are following ESD guidelines in an appropriate ESD-controlled area. These guidelines include using properly-grounded mats and wrist straps, ESD bags and cartons, and related procedures.

Avoid touching board surfaces and onboard components. Only handle boards by their edges. Make sure the USB-1616HS-BNC does not come into contact with foreign elements such as oils, water, and industrial particulate.

The discharge of static electricity can damage some electronic components. Semiconductor devices are especially susceptible to ESD damage.

Connecting the board for I/O operations

Connectors, cables – main I/O connector

The following table lists the board I/O connector type, compatible cables, and compatible accessory products for the USB-1616HS-BNC.

<table>
<thead>
<tr>
<th>Board connectors, cables, and accessory equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main connectors</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Compatible cable for the 37-pin DSUB connector</td>
</tr>
<tr>
<td>Compatible accessory products</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
DSUB37F connector

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELFCAL</td>
<td>Self-calibration. Factory use only. Do not connect.</td>
</tr>
<tr>
<td>2</td>
<td>DAC0</td>
<td>Digital-to-analog converter; analog output 0</td>
</tr>
<tr>
<td>3</td>
<td>AGND</td>
<td>Analog common</td>
</tr>
<tr>
<td>4</td>
<td>TMR1</td>
<td>Timer output 1; 16-bit, frequency pulse generator output</td>
</tr>
<tr>
<td>5</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>6</td>
<td>TMR0</td>
<td>Timer output 0; 16-bit, frequency pulse generator output</td>
</tr>
<tr>
<td>7</td>
<td>TTLTRG</td>
<td>TTL trigger input</td>
</tr>
<tr>
<td>8</td>
<td>CTR2</td>
<td>Counter input, CTR2</td>
</tr>
<tr>
<td>9</td>
<td>CTR0</td>
<td>Counter input, CTR0</td>
</tr>
<tr>
<td>10</td>
<td>Port B – B0</td>
<td>Digital I/O: digital port B, bit 0</td>
</tr>
<tr>
<td>11</td>
<td>Port B – B2</td>
<td>Digital I/O: digital port B, bit 2</td>
</tr>
<tr>
<td>12</td>
<td>Port B – B4</td>
<td>Digital I/O: digital port B, bit 4</td>
</tr>
<tr>
<td>13</td>
<td>Port B – B6</td>
<td>Digital I/O: digital port B, bit 6</td>
</tr>
<tr>
<td>14</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>15</td>
<td>Port A – A0</td>
<td>Digital I/O: digital port A, bit 0</td>
</tr>
<tr>
<td>16</td>
<td>Port A – A2</td>
<td>Digital I/O: digital port A, bit 2</td>
</tr>
<tr>
<td>17</td>
<td>Port A – A4</td>
<td>Digital I/O: digital port A, bit 4</td>
</tr>
<tr>
<td>18</td>
<td>Port A – A6</td>
<td>Digital I/O: digital port A, bit 6</td>
</tr>
<tr>
<td>19</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>20</td>
<td>SGND</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>21</td>
<td>DAC1</td>
<td>Digital to analog converter; analog output 1</td>
</tr>
<tr>
<td>22</td>
<td>AGND</td>
<td>Analog common</td>
</tr>
<tr>
<td>23</td>
<td>+5VDC</td>
<td>+5 VDC power out</td>
</tr>
<tr>
<td>24</td>
<td>XPACR</td>
<td>A/D pacer clock I/O</td>
</tr>
<tr>
<td>25</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>26</td>
<td>CTR3</td>
<td>Counter input, CTR3</td>
</tr>
<tr>
<td>27</td>
<td>CTR1</td>
<td>Counter input, CTR1</td>
</tr>
<tr>
<td>28</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>29</td>
<td>Port B – B1</td>
<td>Digital I/O: digital port B, bit 1</td>
</tr>
<tr>
<td>30</td>
<td>Port B – B3</td>
<td>Digital I/O: digital port B, bit 3</td>
</tr>
<tr>
<td>31</td>
<td>Port B – B5</td>
<td>Digital I/O: digital port B, bit 5</td>
</tr>
<tr>
<td>32</td>
<td>Port B – B7</td>
<td>Digital I/O: digital port B, bit 7</td>
</tr>
<tr>
<td>33</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>34</td>
<td>Port A – A1</td>
<td>Digital I/O: digital port A, bit 1</td>
</tr>
<tr>
<td>35</td>
<td>Port A – A3</td>
<td>Digital I/O: digital port A, bit 3</td>
</tr>
<tr>
<td>36</td>
<td>Port A – A5</td>
<td>Digital I/O: digital port A, bit 5</td>
</tr>
<tr>
<td>37</td>
<td>Port A – A7</td>
<td>Digital I/O: digital port A, bit 7</td>
</tr>
</tbody>
</table>
Cabling

Use a C37FM-x 37-pin cable to connect to the USB-1616HS-BNC's 37-pin device I/O connector.

![Figure 1. C37FM-x cable](image)

Field wiring and signal termination accessories

You can connect the USB-1616HS-BNC to the following accessory boards using the C37FM-x cable.

- **CIO-MINI37** – 37-pin screw terminal board.
- **CIO-MINI37-VERT** – 37-pin screw terminal board with vertical 37-pin male D connector.
- **CIO-TERMINAL** – 37-pin screw terminal board with on-board prototyping area.
- **SCB-37** – 37-conductor, shielded signal connection/screw terminal box.

Details on these products are available on our website at www.mccdaq.com/products/screw_terminal_bnc.aspx#.
Chapter 3

Functional Details

This chapter contains detailed information on all of the features available from the board, including:

- a diagram and explanations of physical board components
- a functional block diagram
- information on how to use the signals generated by the board
- diagrams of signals using default or conventional board settings

USB-1616HS-BNC components

These USB-1616HS-BNC components are shown in Figure 2 and Figure 3.

- 16 BNC connectors for voltage measurement
- One 37-pin DSUB connector for digital I/O, counter/encoder inputs, timer output, and analog output
- One USB port
- One external power connector
- Two LED indicators ("Active" and "Power")

![Figure 2. USB-1616HS-BNC components – front view](image1)

![Figure 3. USB-1616HS-BNC components – rear view](image2)

External power connector (DC IN)

The USB-1616HS-BNC requires external power. Connect the TR-2U power supply to the external power supply connector. This power supply provides 9 VDC power to the USB-1616HS-BNC.
USB-1616HS-BNC block diagram

Figure 4 shows a simplified block diagram of the USB-1616HS-BNC. This device provides all of the functional elements shown in the figure.

![USB-1616HS-BNC Block Diagram](image)

Figure 4. USB-1616HS-BNC functional block diagram

Synchronous I/O – mixing analog, digital, and counter scanning

The USB-1616HS-BNC can read analog, digital, and counter inputs, while generating up to two analog outputs and digital pattern outputs at the same time. Digital and counter inputs do not affect the overall A/D rate because these inputs use no time slot in the scanning sequencer.

For example, one analog input channel can be scanned at the full 1 MHz A/D rate along with digital and counter input channels. Each analog channel can have a different gain, and counter and digital channels do not need additional scanning bandwidth as long as there is at least one analog channel in the scan group.

Digital input channel sampling is not done during the "dead time" of the scan period where no analog sampling is being done either.

Analog input

The USB-1616HS-BNC has a 16-bit, 1-MHz A/D coupled with 16 differential analog inputs. Seven software programmable ranges provide inputs from ±10 V to ±100 mV full scale.

Analog input scanning

The USB-1616HS-BNC has several scanning modes to address various applications. You can load the 512-location scan buffer with any combination of analog input channels. All analog input channels in the scan buffer are measured sequentially at 1 µs per channel by default.

For example, in the fastest mode, with ADC settling time set to 1 µs, a single analog channel can be scanned continuously at 1 MS/s; two analog channels can be scanned at 500 kS/s each; 16 analog input channels can be scanned at 62.5 kS/s.
Settling time

For most applications, leave the settling time at its default of 1 µs. However, if you are scanning multiple channels, and one or more channels are connected to a high-impedance source, you may get better results by increasing the settling time. Remember that increasing the settling time reduces the maximum acquisition rate.

You can set the settling time to 1 µs, 5 µs, 10 µs, or 1 ms.

Example: Analog channel scanning of voltage inputs

Figure 5 shows a simple acquisition. The scan is programmed pre-acquisition and is made up of six analog channels (Ch0, Ch1, Ch3, Ch4, Ch6, and Ch7). Each of these analog channels can have a different gain. The acquisition is triggered and the samples stream to the PC. Each analog channel requires one microsecond of scan time—therefore the scan period can be no shorter than 6 µs for this example. The scan period can be made much longer than 6 µs—up to 1 s. The maximum scan frequency is one divided by 6 µs, or 166,666 Hz.

![Figure 5. Analog channel scan of voltage inputs example](image)

Since the targeted number of oversamples is 256 in this example, each analog channel in the scan group requires 256 microseconds to return one 16-bit value, making the minimum scan period for this example 7 x 256 µs, or 1792 µs. The maximum scan frequency is the inverse of this number, 558 Hz.

Example: Analog and digital scanning, once per scan mode

The scan is programmed pre-acquisition and is made up of six analog channels (Ch0, Ch2, Ch5, Ch11, Ch13, Ch15) and four digital channels (16-bits of digital IO, three counter inputs.) Each of the analog channels can have a different gain. The acquisition is triggered and the samples stream to the PC via the USB cable. Each analog channel requires one microsecond of scan time. Therefore, the scan period can be no shorter than 6 µs for this example. All of the digital channels are sampled at the start of scan and do not require additional scanning bandwidth as long as there is at least one analog channel in the scan group. The scan period can be made much longer than 6 µs, up to 1 second. The maximum scan frequency is one divided by 6 µs or 166,666 Hz.

![Figure 6. Analog and digital scanning, once per scan mode example](image)

The counter channels may return only the lower 16-bits of count value if that is sufficient for the application. They could also return the full 32-bit result if necessary. Similarly, the digital input channel could be the full 24 bits if desired or only eight bits if that is sufficient. If the three counter channels are all returning 32-bit values and the digital input channel is returning a 16-bit value, then 13 samples are being returned to the PC every scan period, with each sample being 16-bits. The 32-bit counter channels are divided into two 16-bit samples—one for the low word, and the other for the high word. If the maximum scan frequency is 166,666 Hz,
then the data bandwidth streaming into the PC is 2.167 MS/s. Some slower PCs may have a problem with data bandwidths greater than 6 MS/s.

The USB-1616HS-BNC has an onboard 1 MS buffer for acquired data.

Example: Sampling digital inputs for every analog sample in a scan group

The scan is programmed pre-acquisition and is made up of six analog channels (Ch0, Ch2, Ch5, Ch11, Ch13, Ch15) and four digital channels (16-bits of digital input, three counter inputs.) Each of the analog channels can have a different gain.

The acquisition is triggered and the samples stream to the PC via the USB cable. Each analog channel requires one microsecond of scan time therefore the scan period can be no shorter than 6 µs for this example. All of the digital channels are sampled at the start of scan and do not require additional scanning bandwidth as long as there is at least one analog channel in the scan group. The 16-bits of digital input are sampled for every analog sample in the scan group. This allows up to 1 MHz digital input sampling while the 1 MHz analog sampling bandwidth is aggregated across many analog input channels.

The scan period can be made much longer than 6 µs—up to 1 second. The maximum scan frequency is one divided by 6 µs, or 166,666 Hz. Note that digital input channel sampling is not done during the "dead time" of the scan period where no analog sampling is being done either.

![Scan diagram](example.png)

Figure 7. Analog and digital scanning, once per scan mode example

If the three counter channels are all returning 32-bit values and the digital input channel is returning a 1-bit value, then 18 samples are returned to the PC every scan period, with each sample being 16-bits. Each 32-bit counter channel is divided into two 16-bit samples—one for the low word and the other for the high word. If the maximum scan frequency is 166,666 Hz, then the data bandwidth streaming into the PC is 3 MS/s. Some slower PCs may have a problem with data bandwidths greater than 6 MS/s.

The USB-1616HS-BNC has an onboard 1 MS buffer for acquired data.

Averaging

Certain acquisition programs apply *averaging* after several samples have been collected. Depending on the nature of the noise, averaging can reduce noise by the square root of the number of averaged samples.

Although averaging can be effective, it suffers from several drawbacks:

- Noise in measurements only decreases as the square root of the number of measurements—reducing RMS noise significantly may require many samples. Thus, averaging is suited to low-speed applications that can provide many samples.
- Only random noise is reduced or eliminated by averaging. Averaging does not reduce or eliminate periodic signals.

Analog output

The USB-1616HS-BNC has two 16-bit, 1 MHz analog output channels. Analog outputs can be updated at a maximum rate of 1 MHz.

The channels have an output range of -10 V to +10 V. Each D/A can continuously output a waveform. In addition, a program can asynchronously output a value to any of the D/A channels for non-waveform applications, assuming that the D/A is not already being used in the waveform output mode.
When used to generate waveforms, you can clock the D/As in several different modes.

- **Internal output scan clock**: The onboard programmable clock can generate updates ranging from 1 Hz to 1 MHz.
- **External input scan clock**: A user-supplied external input scan clock at XPCR can pace both the D/A and the analog input.
- **Internal input scan clock**: The internal ADC scan clock.

Example: Analog channel scanning of voltage inputs and streaming analog outputs

The example shown in Figure 8 adds two DACs and a 16-bit digital pattern output to the example presented in Figure 5 on page 14.

![Figure 8. Analog channel scan of voltage inputs and streaming analog outputs example](image)

This example updates all DACs and the 16-bits of digital I/O. These updates happen at the same time as the output scan clock. All DACs and the 16-bits of pattern digital output are updated at the beginning of each scan.

Due to the time it takes to shift the digital data out to the DACs, plus the actual settling time of the digital-to-analog conversion, the DACs actually take up to 4 µs after the start of scan to settle on the updated value.

The data for the DACs and pattern digital output comes from a PC-based buffer. The data is streamed across the USB2 bus to the USB-1616HS-BNC.

You can also synchronize everything—input scans, DACs, pattern digital outputs—to one clock, which is either internally-generated or externally-applied.

Digital I/O

Sixteen TTL-level digital I/O lines are included in each USB-1616HS-BNC. You can program digital I/O in 8-bit groups as either inputs or outputs and scan them in several modes (see "Digital input scanning" below). You can access input ports asynchronously from the PC at any time, including when a scanned acquisition is occurring.

Digital input scanning

Digital input ports can be read asynchronously before, during, or after an analog input scan.
Digital input ports can be part of the scan group and scanned along with analog input channels. Two synchronous modes are supported when digital inputs are scanned along with analog inputs. Refer to "Example: Sampling digital inputs for every analog sample in a scan group" on page 15 for more information.

In both modes, adding digital input scans has no affect on the analog scan rate limitations.

If no analog inputs are being scanned, the digital inputs can sustain rates up to 4 MHz.

Higher rates—up to 12 MHz—are possible depending on the platform and the amount of data being transferred.

Digital outputs and pattern generation

Digital outputs can be updated asynchronously at any time before, during, or after an acquisition. You can use both 8-bit ports to generate a digital pattern at up to 4 MHz. The USB-1616HS-BNC supports digital pattern generation. The digital pattern can be read from PC RAM.

Higher rates—up to 12 MHz—are possible depending on the platform and the amount of data being transferred.

Digital pattern generation is clocked using an internal clock. The onboard programmable clock generates updates ranging from once every 1 second to 1 MHz, independent of any acquisition rate.

Triggering

Triggering can be the most critical aspect of a data acquisition application. The USB-1616HS-BNC supports the following trigger modes to accommodate certain measurement situations.

Hardware analog triggering

The USB-1616HS-BNC uses true analog triggering in which the trigger level you program sets an analog DAC, which is then compared in hardware to the analog input level on the selected channel. This guarantees an analog trigger latency that is less than 1 µs.

You can select any analog channel as the trigger channel, but the selected channel must be the first channel in the scan. You can program the trigger level, the rising or falling edge to trigger on, and hysteresis.

A note on the hardware analog level trigger and comparator change state

When analog input voltage starts near the trigger level, and you are performing a rising or falling hardware analog level trigger, the analog level comparator may have already tripped before the sweep was enabled. If this is the case, the circuit waits for the comparator to change state. However, since the comparator has already changed state, the circuit does not see the transition.

To resolve this problem, do the following:

1. Set the analog level trigger to the threshold you want.
2. Apply an analog input signal that is more than 2.5% of the full-scale range away from the desired threshold. This ensures that the comparator is in the proper state at the beginning of the acquisition.
3. Bring the analog input signal toward the desired threshold. When the input signal is at the threshold (± some tolerance) the sweep will be triggered.
4. Before re-arming the trigger, again move the analog input signal to a level that is more than 2.5% of the full-scale range away from the desired threshold.

For example, if you are using the ±2 V full-scale range (gain = 5), and you want to trigger at +1 V on the rising edge, set the analog input voltage to a start value that is less than +0.9 V (1 V – (2 V * 2 * 2.5%)).

Digital triggering

A separate digital trigger input line is provided (TTLTRG), allowing TTL-level triggering with latencies guaranteed to be less than 1 µs. You can program both of the logic levels (1 or 0) and the rising or falling edge for the discrete digital trigger input.
Software-based triggering
The three software-based trigger modes differ from hardware analog triggering and digital triggering because the readings—analogue, digital, or counter—are checked by the PC in order to detect the trigger event.

Analog triggering
You can select any analogue channel as the trigger channel. You can program the trigger level, the rising or falling edge to trigger on, and hysteresis.

Pattern triggering
You can select any scanned digital input channel pattern to trigger an acquisition, including the ability to mask or ignore specific bits.

Counter triggering
You can program triggering to occur when one of the counters meets or exceeds a set value, or is within a range of values. You can program any of the included counter channels as the trigger source.

Software-based triggering usually results in a long period of inactivity between the trigger condition being detected and the data being acquired. However, the USB-1616HS-BNC avoids this situation by using pre-trigger data. When software-based triggering is used, and the PC detects the trigger condition—which may be thousands of readings after the actual occurrence of the signal—the USB-1616HS-BNC driver automatically looks back to the location in memory where the actual trigger-causing measurement occurred, and presents the acquired data that begins at the point where the trigger-causing measurement occurs. The maximum inactive period in this mode equals one scan period.

Stop trigger modes
You can use any of the software trigger modes explained previously to stop an acquisition.

For example, you can program an acquisition to begin on one event—such as a voltage level—and then stop on another event—such as a digital pattern.

Pre-triggering and post-triggering modes
The USB-1616HS-BNC supports four modes of pre-triggering and post-triggering, providing a wide variety of options to accommodate any measurement requirement.

When using pre-trigger, you must use software-based triggering to initiate an acquisition.

No pre-trigger, post-trigger stop event
In this simple mode, data acquisition starts when the trigger is received, and the acquisition stops when the stop-trigger event is received.

Fixed pre-trigger with post-trigger stop event
In this mode, you set the number of pre-trigger readings to acquire. The acquisition continues until a stop-trigger event occurs.

No pre-trigger, infinite post-trigger
In this mode, no pre-trigger data is acquired. Instead, data is acquired beginning with the trigger event, and is terminated when you issue a command to halt the acquisition.

Fixed pre-trigger with infinite post-trigger
You set the amount of pre-trigger data to acquire. Then, the system continues to acquire data until the program issues a command to halt acquisition.
Counter inputs

Four 32-bit counters are built into the USB-1616HS-BNC. Each counter accepts frequency inputs up to 20 MHz.

USB-1616HS-BNC counter channels can be configured as standard counters or as multi-axis quadrature encoders.

The counters can concurrently monitor time periods, frequencies, pulses, and other event driven incremental occurrences directly from pulse-generators, limit switches, proximity switches, and magnetic pick-ups.

Counter inputs can be read asynchronously under program control, or synchronously as part of an analog or digital scan group.

When reading synchronously, all counters are set to zero at the start of an acquisition. When reading asynchronously, counters may be cleared on each read, count up continually, or count until the 16-bit or 32-bit limit has been reached. See counter mode explanations below.

![Counter schematic](image)

Figure 9. Typical USB-1616HS-BNC counter channel

Tips for making high-speed counter measurements (> 1 MHz)

- Use coax or twisted-pair wire. Connect one side to Digital Common.
- If the frequency source is tolerant, parallel-terminate the coax or twisted-pair with a 50 Ω or 100 Ω resistor at the terminal block.
- The amplitude of the driving waveform should be as high as possible without violating the over-voltage specification.
- To ensure adequate switching, waveforms should swing at least 0 V to 5 V and have a high slew rate.

Mapped channels

A mapped channel is one of four counter input signals that can get multiplexed into a counter module. The mapped channel can participate with the counter's input signal by gating the counter, latching the counter, and so on. The four possible choices for the mapped channel are the four counter input signals (post-debounce).

A mapped channel can be used to:

- gate the counter
- decrement the counter
- latch the current count to the count register

Usually, all counter outputs are latched at the beginning of each scan within the acquisition. However, you can use a second mapped channel to latch the counter output.

Counter modes

A counter can be asynchronously read with or without clear on read. The asynchronous read-signals strobe when the lower 16-bits of the counter are read by software. The software can read the counter's high 16-bits some time later after reading the lower 16-bits. The full 32-bit result reflects the timing of the first asynchronous read strobe.
Totalize mode

The Totalize mode allows basic use of a 32-bit counter. While in this mode, the channel's input can only increment the counter upward. When used as a 16-bit counter (counter low), one channel can be scanned at the 12 MHz rate. When used as a 32-bit counter (counter high), two sample times are used to return the full 32-bit result. Therefore a 32-bit counter can only be sampled at a 6 MHz maximum rate. If you only want the upper 16 bits of a 32-bit counter, then you can acquire that upper word at the 12 MHz rate.

The counter counts up and does not clear on every new sample. However, it does clear at the start of a new scan command.

The counter rolls over on the 16-bit (counter low) boundary, or on the 32-bit (counter high) boundary.

Clear on read mode

The counter counts up and is cleared after each read. By default, the counter counts up and only clears the counter at the start of a new scan command. The final value of the counter—the value just before it was cleared—is latched and returned to the USB-1616HS-BNC.

Clear on read mode is only available if the counter is in asynchronous mode the. The counter's lower 16-bit value should be read first. This will latch the full 32-bit result and clear the counter. The upper 16-bit value can be read after the lower 16-bit value.

Stop at the top mode

The counter stops at the top of its count. The top of the count is FFFF hex (65,535) for the 16-bit mode, and FFFFFFFF hex (4,294,967,295) for the 32-bit mode.

32-bit or 16-bit

Sets the counter type to either 16-bits or 32-bits. The type of counter only matters if the counter is using the stop at the top mode—otherwise, this option is ignored.

Latch on map

Sets the signal on the mapped counter input to latch the count.

By default, the start of scan signal—a signal internal to the USB-1616HS-BNC that pulses once every scan period to indicate the start of a scan group—latches the count so that the count is updated each time a scan is started.

Gating "on" mode

Sets the gating option to "on" for the mapped channel, enabling the mapped channel to gate the counter.

Any counter can be gated by the mapped channel. When the mapped channel is high, the counter is enabled by default. If the mapped counter is configured for falling edge, the gated counter is disabled when the mapped counter is high. When the mapped channel is low, the counter is disabled (but holds the count value). The mapped channel can be any counter input channel other than the counter being gated.

Decrement "on" mode

Sets the counter decrement option to "on" for the mapped channel. The input channel for the counter increments the counter, and you can use the mapped channel to decrement the counter.

Debounce modes

Each channel's output can be debounced with 16 programmable debounce times from 500 ns to 25.5 ms. The debounce circuitry eliminates switch-induced transients typically associated with electro-mechanical devices including relays, proximity switches, and encoders.

There are two debounce modes, as well as a debounce bypass, as shown in Figure 10. In addition, the signal from the buffer can be inverted before it enters the debounce circuitry. The inverter is used to make the input rising-edge or falling-edge sensitive.

Edge selection is available with or without debounce. In this case the debounce time setting is ignored and the input signal goes straight from the inverter or inverter bypass to the counter module.
There are 16 different debounce times. In either debounce mode, the debounce time selected determines how fast the signal can change and still be recognized.

The two debounce modes are *trigger after stable* and *trigger before stable*. A discussion of the two modes follows.

![Debounce model block diagram](image)

Figure 10. Debounce model block diagram

Trigger after stable mode

In the *trigger after stable* mode, the output of the debounce module does not change state until a period of stability has been achieved. This means that the input has an edge, and then must be stable for a period of time equal to the debounce time.

![Debounce module – trigger after stable mode](image)

Figure 11. Debounce module – trigger after stable mode

The following time periods (T1 through T5) pertain to **Figure 11**. In *trigger after stable* mode, the input signal to the debounce module is required to have a period of stability after an incoming edge, in order for that edge to be accepted (passed through to the counter module.) The debounce time for this example is equal to T2 and T5.

- **T1** – In the example above, the input signal goes high at the beginning of time period T1, but never stays high for a period of time equal to the debounce time setting (equal to T2 for this example.)
- **T2** – At the end of time period T2, the input signal has transitioned high and stayed there for the required amount of time—therefore the output transitions high. If the input signal does not stabilize in the high state long enough, no transition would have appeared on the output and the entire disturbance on the input would have been rejected.
- **T3** – During time period T3, the input signal remained steady. No change in output is seen.
- **T4** – During time period T4, the input signal has more disturbances and does not stabilize in any state long enough. No change in the output is seen.
- **T5** – At the end of time period T5, the input signal has transitioned low and stayed there for the required amount of time—therefore the output goes low.
Trigger before stable mode

In the trigger before stable mode, the output of the debounce module immediately changes state, but will not change state again until a period of stability has passed. For this reason the mode can be used to detect glitches.

![Debounce module - Trigger before stable mode](image)

Figure 12. Debounce module – Trigger before stable mode

The following time periods (T1 through T6) pertain to the above drawing.

- **T1** – In the illustrated example, the input signal is low for the debounce time (equal to T1); therefore when the input edge arrives at the end of time period T1, it is accepted and the output (of the debounce module) goes high. Note that a period of stability must precede the edge in order for the edge to be accepted.
- **T2** – During time period T2, the input signal is not stable for a length of time equal to T1 (the debounce time setting for this example.) Therefore, the output stays "high" and does not change state during time period T2.
- **T3** – During time period T3, the input signal is stable for a time period equal to T1, meeting the debounce requirement. The output is held at the high state. This is the same state as the input.
- **T4** – At anytime during time period T4, the input can change state. When this happens, the output will also change state. At the end of time period T4, the input changes state, going low, and the output follows this action [by going low].
- **T5** – During time period T5, the input signal again has disturbances that cause the input to not meet the debounce time requirement. The output does not change state.
- **T6** – After time period T6, the input signal has been stable for the debounce time and therefore any edge on the input after time period T6 is immediately reflected in the output of the debounce module.

Debounce mode comparisons

Figure 13 shows how the two modes interpret the same input signal, which exhibits glitches. Notice that the trigger before stable mode recognizes more glitches than the trigger after stable mode. Use the bypass option to achieve maximum glitch recognition.

![Debounce modes interpreting the same signal](image)

Figure 13. Example of two debounce modes interpreting the same signal

Debounce times should be set according to the amount of instability expected in the input signal. Setting a debounce time that is too short may result in unwanted glitches clocking the counter. Setting a debounce time too long may result in an input signal being rejected entirely. Some experimentation may be required to find the appropriate debounce time for a particular application.

To see the effects of different debounce time settings, simply view the analog waveform along with the counter output. This can be done by connecting the source to an analog input.
Use trigger before stable mode when the input signal has groups of glitches and each group is to be counted as one. The trigger before stable mode recognizes and counts the first glitch within a group but rejects the subsequent glitches within the group if the debounce time is set accordingly. The debounce time should be set to encompass one entire group of glitches as shown in the following diagram.

![Diagram showing debounce time for trigger before stable mode](image1)

Figure 14. Optimal debounce time for trigger before stable mode

Trigger after stable mode behaves more like a traditional debounce function: rejecting glitches and only passing state transitions after a required period of stability. *Trigger after stable* mode is used with electro-mechanical devices like encoders and mechanical switches to reject switch bounce and disturbances due to a vibrating encoder that is not otherwise moving. The debounce time should be set short enough to accept the desired input pulse but longer than the period of the undesired disturbance as shown in **Figure 15**.

![Diagram showing debounce time for trigger after stable mode](image2)

Figure 15. Optimal debounce time for trigger after stable mode

Encoder mode

Rotary shaft encoders are frequently used with CNC equipment, metal-working machines, packaging equipment, elevators, valve control systems, and in a multitude of other applications in which rotary shafts are involved.

The USB-1616HS-BNC supports quadrature encoders with up to 2 billion pulses per revolution, 20 MHz input frequencies, and x1, x2, x4 count modes.

The encoder mode allows the USB-1616HS-BNC to make use of data from optical incremental quadrature encoders. In encoder mode, the USB-1616HS-BNC accepts single-ended inputs. When reading phase A, phase B, and index Z signals, the USB-1616HS-BNC provides positioning, direction, and velocity data.

The USB-1616HS-BNC can receive input from up to two encoders.

The USB-1616HS-BNC supports quadrature encoders with a 16-bit (counter low) or a 32-bit (counter high) counter, 20 MHz frequency, and X1, X2, and X4 count modes. With only phase A and phase B signals, two channels are supported; with phase A, phase B, and index Z signals, 1 channel is supported. Each input can be debounced from 500 ns to 25.5 ms (total of 16 selections) to eliminate extraneous noise or switch induced transients. Encoder input signals must be within -5V to +10V and the switching threshold is TTL (1.3V).

Quadrature encoders generally have three outputs: A, B, and Z. The A and B signals are pulse trains driven by an optical sensor inside the encoder. As the encoder shaft rotates, a laminated optical shield rotates inside the encoder. The shield has three concentric circular patterns of alternating opaque and transparent windows through which an LED shines. There is one LED and one phototransistor for each of the concentric circular...
patterns. One phototransistor produces the A signal, another phototransistor produces the B signal and the last phototransistor produces the Z signal. The concentric pattern for A has 512 window pairs (or 1024, 4096, etc.)

When using a counter for a trigger source, use a pre-trigger with a value of at least 1. Since all counters start at zero with the initial scan, there is no valid reference in regard to rising or falling edge. Setting a pre-trigger to 1 or more ensures that a valid reference value is present, and that the first trigger is legitimate.

![Figure 16. Representation of rotary shaft quadrature encoder](image)

The concentric pattern for B has the same number of window pairs as A—except that the entire pattern is rotated by 1/4 of a window-pair. Thus the B signal is always 90 degrees out of phase from the A signal. The A and B signals pulse 512 times (or 1024, 4096, etc.) per complete rotation of the encoder.

The concentric pattern for the Z signal has only one transparent window and therefore pulses only once per complete rotation. Representative signals are shown in the following figure.

![Figure 17. Representation of quadrature encoder outputs: A, B, and Z](image)

As the encoder rotates, the A (or B) signal indicates the distance the encoder has traveled. The frequency of A (or B) indicates the velocity of rotation of the encoder. If the Z signal is used to zero a counter (that is clocked by A) then that counter will give the number of pulses the encoder has rotated from its reference. The Z signal is a reference marker for the encoder. It should be noted that when the encoder is rotating clockwise (as viewed from the back), A will lead B and when the encoder is rotating counterclockwise, A will lag B. If the counter direction control logic is such that the counter counts upward when A leads B and counts downward when A lags B, then the counter will give direction control as well as distance from the reference.

Maximizing encoder accuracy

If there are 512 pulses on A, then the encoder position is accurate to within $360^\circ/512$.

You can get even greater accuracy by counting not only rising edges on A but also falling edges on A, giving position accuracy to 360 degrees/1024.

You get maximum accuracy counting rising and falling edges on A and on B (since B also has 512 pulses.) This gives a position accuracy of $360^\circ/2048$. These different modes are known as X1, X2, and X4.
Connecting the USB-1616HS-BNC to an encoder

You can use up to two encoders with each USB-1616HS-BNC in your acquisition system. Each A and B signal can be made as a single-ended connection with respect to common ground. Differential applications are not supported.

For single-ended applications:
- Connect signals A, B, and Z to the counter inputs on the USB-1616HS-BNC.
- Connect each encoder ground to GND.
- +5 V to power encoders is available from the DB37 connector.

You can also connect external pull-up resistors to the USB-1616HS-BNC counter inputs by placing a pull-up resistor between any input channel and the encoder power supply. Choose a pull-up resistor value based on the encoder's output drive capability and the input impedance of the USB-1616HS-BNC. Lower values of pull-up resistors cause less distortion, but also cause the encoder's output driver to pull down with more current.

Wiring to one encoder: Figure 18 shows the connections for one encoder to a USB-1616HS-BNC module.

![Diagram of encoder connections](image)

Figure 18. Connections from single encoder to DSUB37 pins on the USB-1616HS-BNC

The "A" signal must be connected to an even-numbered channel and the associated "B" signal must be connected to the next higher odd-numbered channel. For example, if "A" were connected to counter 0, then "B" would be connected to counter 1.

Connect each signal (A, B, Z) as a single-ended connection with respect to the common ground. The encoder needs power from an external power output (typically +5 VDC). Connect the encoder's power input to the power source and connect the return to the digital common of that source.

Wiring for two encoders: The following figure illustrates single-ended connections for two encoders. Differential connections are not applicable.

Each signal (A, B) can be connected as a single-ended connection with respect to the common digital ground (GND). Both encoders need power from an external power source (typically +5 VDC).

Connect each encoder's power input to the external power source. Connect the return to digital common (GND) on the same source.
Timer outputs

Two 16-bit timer outputs are built into every USB-1616HS-BNC. Each timer output can generate a different square wave with a programmable frequency in the range of 16 Hz to 1 MHz.

Example: Timer outputs

Timer outputs are programmable square waves. The period of the square wave can be as short as 1 µs or as long as 65535 µs. Refer to the table below for examples of timer output frequencies.

<table>
<thead>
<tr>
<th>Divisor</th>
<th>Timer output frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 MHz</td>
</tr>
<tr>
<td>100</td>
<td>10 kHz</td>
</tr>
<tr>
<td>1000</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10000</td>
<td>100 Hz</td>
</tr>
<tr>
<td>65535</td>
<td>▪ 15.259 Hz (in asynchronous write)</td>
</tr>
<tr>
<td></td>
<td>▪ Turns timer off (for setpoint operation).</td>
</tr>
</tbody>
</table>

The two timer outputs can generate different square waves. The timer outputs can be updated asynchronously at any time.

Both timer outputs can also be updated during an acquisition as the result of setpoints applied to analog or digital inputs.
Using detection setpoints for output control

What are detection setpoints?

With the USB-1616HS-BNC's setpoint configuration feature, you can configure up to 16 detection setpoints associated with channels in a scan group. Each setpoint can update the following, allowing for real-time control based on acquisition data:

- analog outputs (DACs)
- timers

Setpoint configuration overview

You can program each as one of the following:

- Single point referenced – Above, below, or equal to the defined setpoint.
- Window (dual point) referenced – Inside or outside the window.
- Window (dual point) referenced, hysteresis mode – Outside the window high forces one output (designated Output 2; outside the window low-forces another output, designated as Output 1).

A digital detect signal is used to indicate when a signal condition is True or False—for example, whether or not the signal has met the defined criteria. The detect signals can be part of the scan group and can be measured as any other input channel, thus allowing real-time data analysis during an acquisition.

The detection module looks at the 16-bit data being returned on a channel and generates another signal for each channel with a setpoint applied (Detect1 for Channel 1, Detect2 for Channel 2, and so on). These signals serve as data markers for each channel's data. It does not matter whether that data is volts, counts, or timing.

A channel's detect signal shows a rising edge and is True (1) when the channel's data meets the setpoint criteria. The detect signal shows a falling edge and is False (0) when the channel's data does not meet the setpoint criteria. The True and False states for each setpoint criteria are explained in the "Using the setpoint status register" section on page 29.

<table>
<thead>
<tr>
<th>Criteria – input signal is equal to X</th>
<th>Action - driven by condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare X to:</td>
<td>Update conditions:</td>
</tr>
<tr>
<td>Limit A or Limit B</td>
<td>True only:</td>
</tr>
<tr>
<td>▪ Equal to A (X = A)</td>
<td>▪ If True, then output value 1</td>
</tr>
<tr>
<td>▪ Below A (X < A)</td>
<td>▪ If False, then perform no action</td>
</tr>
<tr>
<td>▪ Above B (X > B)</td>
<td>True and False:</td>
</tr>
<tr>
<td></td>
<td>▪ If True, then output value 1</td>
</tr>
<tr>
<td></td>
<td>▪ If False, then output value 2</td>
</tr>
<tr>
<td>Window* (non-hysteresis mode)</td>
<td></td>
</tr>
<tr>
<td>▪ Inside (B < X < A)</td>
<td></td>
</tr>
<tr>
<td>▪ Outside (B > X; or, X > A)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 21. Diagram of detection setpoints

The table above summarizes the setpoint criteria and their corresponding actions. The setpoint configuration overview provides a detailed explanation of how to program each setpoint configuration.
Functional Details

<table>
<thead>
<tr>
<th>Criteria – input signal is equal to X</th>
<th>Action - driven by condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare X to: Setpoint definition (choose one)</td>
<td>Update conditions:</td>
</tr>
<tr>
<td>Window* (hysteresis mode)</td>
<td>Hysteresis mode (forced update)</td>
</tr>
<tr>
<td>• Above A (X > A)</td>
<td>• If X > A is True, then output value 2 until X < B is True, then output value 1.</td>
</tr>
<tr>
<td>• Below (A < X < B) Both conditions are checked when in hysteresis mode</td>
<td>• If X < B is True, then output value 1 until X > A is True, then output value 2.</td>
</tr>
</tbody>
</table>

This is saying:
(a) If the input signal is outside the window high, output value 2 until the signal goes outside the window low, and
(b) if the signal is outside the window low, output value 1 until the signal goes outside the window high. There is no change to the detect signal while within the window.

The detect signal has the timing resolution of the scan period as seen in the diagram below. The detect signal can change no faster than the scan frequency (1/scan period.)

![Detect Signal Diagram](image)

Figure 22. Example diagram of detection signals for channels 1, 2, and 3

Each channel in the scan group can have one detection setpoint. There can be no more than 16 total setpoints total applied to channels within a scan group.

Detection setpoints act on 16-bit data only. Since the USB-1616HS-BNC has 32-bit counters, data is returned 16-bits at a time. The lower word, the higher word, or both lower and higher words can be part of the scan group. Each counter input channel can have one detection setpoint for the counter’s lower 16-bit value and one detection setpoint for the counter’s higher 16-bit value.

Setpoint configuration

You program all setpoints as part of the pre-acquisition setup, similar to setting up an external trigger. Since each setpoint acts on 16-bit data, each has two 16-bit compare values: a high limit (limit A) and a low limit (limit B). These limits define the setpoint window.

There are several possible conditions (criteria) and effectively three update modes, as explained in the following configuration summary.

Set high limit

You can set the 16-bit high limit (limit A) when configuring the USB-1616HS-BNC through software.

Set low limit

You can set the 16-bit low limit (limit B) when configuring the USB-1616HS-BNC through software.

Set criteria

- **Inside window**: Signal is below 16-bit high limit and above 16-bit low limit.
- **Outside window**: Signal is above 16-bit high limit, or below 16-bit low limit.
- **Greater than value**: Signal is above 16-bit low limit, so 16-bit high limit is not used.
- **Less than value**: Signal is below 16-bit high limit, so 16-bit low limit is not used.
- **Equal to value**: Signal is equal to 16-bit high limit, and limit B is not used.

 The *equal to* mode is intended for use when the counter or digital input channels are the source channel. You should only use the *equal to* 16-bit high limit (*limit A*) mode with counter or digital input channels as the channel source. If you want similar functionality for analog channels, then use the *inside window* mode.

- **Hysteresis mode**: Outside the window, high forces output 2 until an outside the window low condition exists, then output 1 is forced. Output 1 continues until an outside the window high condition exists. The cycle repeats as long as the acquisition is running in hysteresis mode.

Set output channel

- None
- Update DAC
- Update timer

Update modes

- Update on *True* only
- Update on *True* and *False*

Set values for output

- 16-bit DAC value or timer value when input meets criteria.
- 16-bit DAC value or timer value when does not meet criteria.

When using setpoints with triggers other than immediate, hardware analog, or TLL, the setpoint criteria evaluation begins immediately upon arming the acquisition.

Using the setpoint status register

You can use the setpoint status register to check the current state of the 16 possible setpoints. In the register, Setpoint 0 is the least-significant bit and Setpoint 15 is the most-significant bit. Each setpoint is assigned a value of 0 or 1.

- A value of 0 indicates that the setpoint criteria are not met—in other words, the condition is *False*.
- A value of 1 indicates that the criteria have been met—in other words, the condition is *True*.

In the following example, the criteria for setpoints 0, 1, and 4 is satisfied (*True*), but the criteria for the other 13 setpoints has not been met.

<table>
<thead>
<tr>
<th>Setpoint #</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>True (1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>False (0)</td>
<td><<< Most significant bit</td>
<td></td>
<td>Least significant bit >>></td>
<td></td>
</tr>
</tbody>
</table>

From the table above we have **10011** binary, or 19 decimal, derived as follows:

- Setpoint 0, having a *True* state, shows 1, giving us decimal 1.
- Setpoint 1, having a *True* state, shows 1, giving us decimal 2.
- Setpoint 4, having a *True* state, shows 1, giving us decimal 16.

For proper operation, the setpoint status register must be the last channel in the scan list.

Examples of control outputs

Detecting on analog input and DAC updates

Update mode: Update on *True* and *False*

Criteria: Channel 5 example: *below limit*; channel 4 example: *inside window*

In this example, channel 5 is programmed with reference to one setpoint (*limit A*), defining a low limit.

Channel 4 is programmed with reference to two setpoints (*limit A* and *limit B*) which define a window for that channel.
Functional Details

<table>
<thead>
<tr>
<th>Channel</th>
<th>Condition</th>
<th>State of detect signal</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Below limit A (for channel 5)</td>
<td>True</td>
<td>When channel 5 analog input voltage is below the limit A, update DAC1 with output value 0.0 V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False</td>
<td>When the above stated condition is false, update DAC1 with the Output Value of -1.0 V.</td>
</tr>
<tr>
<td>4</td>
<td>Within window (between limit A and limit B) for channel 4</td>
<td>True</td>
<td>When Channel 4’s analog input voltage is within the window, update DAC1 with the Output Value of -1.0 V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False</td>
<td>When the above stated condition is False (channel 4 analog input voltage is outside the window), update DAC1 with the Output Value of 0.0 V.</td>
</tr>
</tbody>
</table>

In the channel 5 example below, the setpoint placed on analog Channel 5 updates DAC1 with 0.0 V. The update occurs when channel 5’s input is less than the setpoint (limit A). When the value of channel 5’s input is above setpoint limit A, the condition of <A is false and DAC1 is then updated with -1.0 V.

![Channel 5 analog input voltage](image)

Figure 23. Example 1: Analog inputs with setpoints update on True and False

In the channel 4 example below, you can program control outputs on each setpoint, and use the detection for channel 4 to update DAC1 with -1.0 V when the analog input voltage is within the shaded region and a different value (0.0 V) when the analog input voltage is outside the shaded region.

![Channel 4 analog input voltage](image)

Figure 24. Example 2: Analog inputs with setpoints update on True and False

Detection on an analog input, timer output updates

Update Mode: Update on True and False

Criteria Used: Inside window
Figure 25 shows how a setpoint can be used to update a timer output. Channel 3 is an analog input channel. A setpoint is applied using update on True and False, with a criteria of inside-the-window, where the signal value is inside the window when simultaneously less than Limit A but greater than Limit B.

Whenever the channel 15 analog input voltage is inside the setpoint window (condition True), Timer0 is updated with one value; and whenever the channel 15 analog input voltage is outside the setpoint window (condition False) timer0 will be updated with a second output value.

Using the hysteresis function

Update mode: N/A; the hysteresis option has a forced update built into the function

Criteria used: Window criteria for above and below the set limits

Figure 26 shows analog input Channel 3 with a setpoint which defines two 16-bit limits, Limit A (High) and Limit B (Low). These are being applied in the hysteresis mode and DAC channel 0 is updated accordingly.

In this example, Channel 3's analog input voltage is being used to update DAC0 as follows:

- When outside the window, low (below limit B) DAC0 is updated with 3.0 V. This update remains in effect until the analog input voltage goes above Limit A.
- When outside the window, high (above limit A), DAC0 is updated with 7.0 V. This update remains in effect until the analog input signal falls below limit B. At that time we are again outside the limit "low" and the update process repeats itself.

Hysteresis mode can also be done with a timer output instead of a DAC.
Using multiple inputs to control one DAC output

Update mode: Rising edge, for each of two channels

Criteria used: Inside window, for each of two channels

The figure below shows how multiple inputs can update one output. In the following figure the DAC1 analog output is being updated. Analog input Channel 3 has an inside-the-window setpoint applied. Whenever Channel 3’s input goes inside the programmed window, DAC1 will be updated with 3.0 V.

Analog input Channel 7 also has an inside-the-window setpoint applied. Whenever channel 7’s input goes inside the programmed window, DAC1 is updated with -7.0 V.

The update on *True*-only mode was selected, and therefore the updates for DAC1 only occur when the criteria is met. However, in the above figure we see that there are two setpoints acting on one DAC. We can also see that the two criteria can be met simultaneously. When both criteria are *True* at the same time, the DAC1 voltage is associated with the criteria that has been most recently met.
Detecting setpoints on a totalizing counter

In the following figure, Channel 1 is a counter in totalize mode. Two setpoints define a point of change for Detect 1 as the counter counts upward. The detect output is high when inside the window (greater than Limit B (the low limit) but less than Limit A (the high limit)).

In this case, the Channel 1 setpoint is defined for the 16 lower bits of channel 1’s 32-bit value. You could update DAC0 on a True condition (the rising edge of the detection signal). Alternately, you could update one of the timer outputs with a value.

![Diagram of Channel 1 in totalizing counter mode, inside the window setpoint](image)

Detection setpoint details

Controlling analog and timer outputs

You can program each setpoint with a 16-bit DAC update value, and any one of the two DAC outputs can be updated in real time. Any setpoint can also be programmed with a timer update value.

In hysteresis mode, each setpoint has two forced update values. Each update value can drive one DAC or one timer. In hysteresis mode, the outputs do not change when the input values are inside the window. There is one update value that gets applied when the input values are less than the window and a different update value that gets applied when the input values are greater than the window.

Update on True and False uses two update values. The update values can drive DACs or timer outputs.

Analog outputs have a 3µs delay before updating due to the shifting of the digital data out to the D/A converter, which takes 1 µs plus the actual conversion time of the D/A converter (another 2 µs at worst). Going back to the above example, the setpoint for analog input Channel 2’s DAC update would occur 5µs after the ADC conversion for Channel 2, or 6 µs after the start of the scan.

When using setpoints to control any of the DAC outputs, increased latencies may occur if attempting to stream data to DACs or pattern digital output at the same time. The increased latency can be as long as the period of the output scan clock. For these reasons, avoid streaming outputs on any DAC or pattern digital output when using setpoints to control DACs.

DAC or timer update latency

Setpoints allow analog output DACs or timers to update very quickly. Exactly how fast an output can update is determined by these factors:

- scan rate
- synchronous sampling mode
- type of output to be updated
For example, you set an acquisition to have a scan rate of 100 kHz, which means each scan period is 10 µs. Within the scan period you sample six analog input channels. These are shown in the following figure as channels 1 through 6. The ADC conversion occurs at the beginning of each channel's 1 µs time block.

![Figure 29. Example of DAC latency](image)

By applying a setpoint on analog input channel 2, that setpoint gets evaluated every 10 µs with respect to the sampled data for channel 2.

Due to the pipelined architecture of the analog-to-digital converter system, the setpoint cannot be evaluated until 2 µs after the ADC conversion.

Analog outputs have a 3µs delay due to the shifting of the digital data out to the D/A converter which takes 1 µs, plus the actual conversion time of the D/A converter (another 2 µs, worst case). Going back to the above example, if the setpoint for analog input Channel 2 required a DAC update it would occur 5µs after the ADC conversion for Channel 2, or 6 µs after the start of the scan.

When using setpoints to control any of the DAC outputs, latencies may increase if attempting to stream data to DACs or pattern digital output at the same time. The increased latency can be as long as the period of the DAC pacer clock. For these reasons, avoid streaming outputs on any DAC or pattern digital output when using setpoints to control DACs.

The detection circuit works on data that is put into the acquisition stream at the scan rate. This data is acquired according to the pre-acquisition setup (scan group, scan period, etc.) and returned to the PC. Counters are latched into the acquisition stream at the beginning of every scan. The actual counters may be counting much faster than the scan rate, and therefore only every 10th, 100th, or nth count shows up in the acquisition data.

As a result, you can set a small detection window on a totalizing counter channel and have the detection setpoint "stepped over" since the scan period was too long. Even though the counter value stepped into and out of the detection window, the actual values going back to the PC may not. This is true no matter what mode the counter channel is in.

When setting a detection window, keep a scan period in mind. This applies to analog inputs and counter inputs. Quickly changing analog input voltages can step over a setpoint window if not sampled often enough.

There are three possible solutions for overcoming this problem:

- Shorten the scan period to give more timing resolution on the counter values or analog values.
- Widen the setpoint window by increasing limit A and/or lowering limit B.
- A combination of both solutions (1 and 2) could be made.
Calibrating the USB-1616HS-BNC

Board ranges are calibrated at the factory using a digital NIST traceable calibration method in which a correction factor for each range is stored on the unit at the time of calibration.

Two calibration tables are stored on the board in EPROM — one table contains the factory calibration, and the other is available for field calibration. You can adjust the AI calibration while the board is installed in the acquisition system without destroying the factory calibration supplied with the board.

You can perform field calibration automatically in seconds with InstaCal. No external hardware or instruments are required. Field calibration derives its traceability through an on-board reference which has a stability of 0.005% per year.

Calibrate the board after it has fully warmed up; the recommended warm-up time is 30 minutes. For best results, calibrate the board immediately before making critical measurements. The high resolution analog components on the board are somewhat sensitive to temperature. Pre-measurement calibration ensures that your board is operating at optimum calibration values.

The recommended calibration interval is one year.
Chapter 5

Specifications

Typical for 25 °C unless otherwise specified. Specifications in italic text are guaranteed by design.

Analog input

Table 1. Analog input specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D converter type</td>
<td>Successive approximation</td>
</tr>
<tr>
<td>Resolution</td>
<td>16 bits</td>
</tr>
<tr>
<td>Number of channels</td>
<td>16 differential</td>
</tr>
<tr>
<td>Input ranges (software and sequencer programmable)</td>
<td>Bipolar: ±10 V, ±5 V, ±2 V, ±1 V, ±0.5 V, ±0.2 V, ±0.1 V</td>
</tr>
<tr>
<td>Maximum sample rate</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Nonlinearity (integral)</td>
<td>±2 LSB maximum</td>
</tr>
<tr>
<td>Nonlinearity (differential)</td>
<td>±1 LSB maximum</td>
</tr>
<tr>
<td>A/D pacing</td>
<td>Onboard input scan clock, external source (XAPCR)</td>
</tr>
<tr>
<td>Trigger sources and modes</td>
<td>See Table 7</td>
</tr>
<tr>
<td>Acquisition data buffer</td>
<td>1 MSample</td>
</tr>
<tr>
<td>Configuration memory</td>
<td>Programmable I/O</td>
</tr>
<tr>
<td>Maximum usable input voltage + common mode voltage</td>
<td>Range: ±10 V, ±5 V, ±2 V, ±1 V, ±0.5 V</td>
</tr>
<tr>
<td></td>
<td>Range: ±0.2 V, ±0.1 V</td>
</tr>
<tr>
<td>Signal to noise and distortion</td>
<td>72 dB typical for ±10 V range, 1 kHz fundamental</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td>-80 dB typical for ±10 V range, 1 kHz fundamental</td>
</tr>
<tr>
<td>Calibration</td>
<td>Auto-calibration, calibration factors for each range stored onboard in non-volatile RAM.</td>
</tr>
<tr>
<td>CMRR @ 60 Hz</td>
<td>-70 dB typical DC to 1 kHz</td>
</tr>
<tr>
<td>Bias current</td>
<td>40 pA typical (0 °C to 35 °C)</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>-75 dB typical DC to 60 Hz; -65 dB typical @ 10 kHz</td>
</tr>
<tr>
<td>Input impedance</td>
<td>20 kΩ differential</td>
</tr>
<tr>
<td>Absolute maximum input voltage</td>
<td>±30 V</td>
</tr>
<tr>
<td>Maximum usable input voltage + common mode voltage</td>
<td>Ranges</td>
</tr>
<tr>
<td></td>
<td>5, 10 V</td>
</tr>
<tr>
<td></td>
<td>0.1, 0.2, 0.5, 1, 2 V</td>
</tr>
<tr>
<td></td>
<td>10.5 V</td>
</tr>
<tr>
<td></td>
<td>6.0 V</td>
</tr>
</tbody>
</table>

Accuracy

Table 2. Analog input accuracy specifications

<table>
<thead>
<tr>
<th>Voltage range</th>
<th>Accuracy ±(% of reading + % range) 23°C ±10 °C, 1 year</th>
<th>Temperature coefficient ±(ppm of reading + ppm range)/°C</th>
<th>Noise (cts RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 V to 10 V</td>
<td>0.031% + 0.008%</td>
<td>14 + 8</td>
<td>2.0</td>
</tr>
<tr>
<td>-5 V to 5 V</td>
<td>0.031% + 0.009%</td>
<td>14 + 9</td>
<td>3.0</td>
</tr>
<tr>
<td>-2 V to 2 V</td>
<td>0.031% + 0.010%</td>
<td>14 +10</td>
<td>2.0</td>
</tr>
<tr>
<td>-1 V to 1 V</td>
<td>0.031% + 0.02%</td>
<td>14 +12</td>
<td>3.5</td>
</tr>
<tr>
<td>-500 mV to 500 mV</td>
<td>0.031% + 0.04%</td>
<td>14 +18</td>
<td>5.5</td>
</tr>
<tr>
<td>-200 mV to 200 mV</td>
<td>0.036% + 0.075%</td>
<td>14 +12</td>
<td>8.0</td>
</tr>
<tr>
<td>-100 mV to 100 mV</td>
<td>0.042% + 0.15%</td>
<td>14 +18</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Note 1

Note 2
Note 1: Specifications assume single-channel scan, 1 MHz scan rate, unfiltered, CMV=0.0 V, 30 minute warm-up, exclusive of noise, range is +FS to -FS.

Note 2: Noise reflects 10,000 samples at 1 MHz, typical, differential short.

Analog outputs

Analog output channels can be updated synchronously relative to scanned inputs, and clocked from either an internal onboard clock, or an external clock source. Analog outputs can also be updated asynchronously, independent of any other scanning system.

<table>
<thead>
<tr>
<th>Channels</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>16-bits</td>
</tr>
<tr>
<td>Data buffer</td>
<td>PC-based memory</td>
</tr>
<tr>
<td>Output voltage range</td>
<td>±10 V</td>
</tr>
<tr>
<td>Output current</td>
<td>±1 mA</td>
</tr>
<tr>
<td>Offset error</td>
<td>±0.0045 V maximum</td>
</tr>
<tr>
<td>Digital feed-through</td>
<td><10 mV when updated</td>
</tr>
<tr>
<td>DAC analog glitch</td>
<td><12 mV typical at major carry</td>
</tr>
<tr>
<td>Gain error</td>
<td>±0.01%</td>
</tr>
<tr>
<td>Coupling</td>
<td>DC</td>
</tr>
<tr>
<td>Update rate</td>
<td>1 MHz maximum, resolution 20.83 ns</td>
</tr>
<tr>
<td>Settling time</td>
<td>2 µs to rated accuracy, 10 V step.</td>
</tr>
</tbody>
</table>

Pacer sources

- Three programmable sources:
 - Onboard output scan clock, independent of input scan clock
 - Onboard input scan clock
 - External input scan clock (XAPCR)

Trigger sources

Start of input scan
Digital input/output

Table 4. Digital input/output specifications

Number of I/O	16
Ports	Two banks of eight. Each port is programmable as input or output
Input scanning modes	Two programmable: Asynchronous, under program control at any time relative to input scanning; Synchronous with input scanning
Input characteristics	220 Ω series resistors; 20 pF to common
Logic keeper circuit	Holds the logic value to 0 or 1 when there is no external driver
Input protection	±15 kV ESD clamp diodes parallel
Input high	+2.0 V to +5.0 V
Input low	0 to 0.8 V
Output high	>2.0 V
Output low	<0.8 V
Output current	Output 1.0 mA per pin
Digital input pacing	Onboard input scan clock, external input scan clock (XAPCR)
Digital output pacing	Three programmable sources: Onboard output scan clock, independent of input scan clock; Onboard input scan clock; External input scan clock (XAPCR)
Digital input trigger sources and modes	See Table 7
Digital output trigger sources	Start of input scan
Sampling/update rate	4 MHz maximum (rates up to 12 MHz are sustainable on some platforms)
Pattern generation output	Both 8-bit ports can be configured to support 16-bit pattern generation. The pattern can also be updated synchronously with an acquisition at up to 4 MHz.

Counters

Counter inputs can be scanned based on an internal programmable timer or an external clock source.

Table 5. Counter specifications

Channels	4 independent
Resolution	32-bit
Input frequency	20 MHz maximum
Input signal range	-5 V to 10 V
Input characteristics	10 kΩ pull-up, 200 Ω series resistor, ±15 kV ESD protection
Trigger level	TTL
Minimum pulse width	25 ns high, 25 ns low
Debounce times	16 selections from 500 ns to 25.5 ms, positive or negative edge sensitive, glitch detect mode or debounce mode
Time base accuracy	50 ppm (0 ° to 50 °C)
Counter read pacer	Onboard input scan clock, external input scan clock (XAPCR)
Trigger sources and modes	See Table 7
Programmable mode	Counter
Counter mode options	Totalize, clear on read, rollover, stop at all Fs, 16- or 32-bit, any other channel can gate the counter
Input sequencer

Analog, digital, and counter inputs can be scanned based on either an internal programmable timer or an external clock source.

Table 6. Input sequencer specifications

| Input scan clock sources: two (see Note 3) | Internal, programmable:
| | ▪ Analog channels from 1 µs to 1 s in 20.83 ns steps.
| | ▪ Digital channels and counters from 250 ns to 1 s in 20.83 ns steps.
| | External, TTL level input (XAPCR):
| | ▪ Analog channels down to 1 µs minimum
| | ▪ Digital channels and counters down to 250 ns minimum
| Programmable parameters per scan | Programmable channels (random order), programmable gain
| Depth | 512 locations
| Onboard channel-to-channel scan rate | Analog: 1 MHz maximum
| | Digital: 4 MHz if no analog channels are enabled, 1 MHz with analog channels enabled
| External input scan clock (XAPCR) maximum rate | Analog: 1 MHz
| | Digital: 4 MHz if no analog channels are enabled, 1 MHz with analog channels enabled
| Clock signal range: | Logical zero: 0 V to 0.8 V
| | Logical one: 2.4 V to 5.0 V
| Minimum pulse width | 50 ns high, 50 ns low

Note 3: The maximum scan clock rate is the inverse of the minimum scan period. The minimum scan period is equal to 1 µs times the number of analog channels. If a scan contains only digital channels, then the minimum scan period is 250 ns.

Some platforms can sustain clock rates up to 83.33 ns.

External acquisition scan clock

| Pin name | XAPCR
| Pin type | Bidirectional
| Input | Maximum rate
| | ▪ Analog: 990 kHz
| | ▪ Digital: 4 MHz if no analog channels are enabled, 1 MHz with analog channels enabled
| Clock input signal range: | Logical zero: 0 V to 1.0 V
| | Logical one: 2.3 V to 5.0 V
| | Input pulled up to +3.3 V through 2.47 kΩ
| Minimum pulse width: 50 ns high, 50 ns low
| Output | Clock output signal range:
| | ▪ Logical one: 137 Ω to +3.3 V
| | ▪ Logical zero: 130 Ω to ground
| Output pulse width: 42 ns high, occurs on every rising edge of the internal pacer clock.
Triggering

Table 7. Trigger sources and modes

<table>
<thead>
<tr>
<th>Trigger source</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single channel analog hardware trigger</td>
<td>Any analog input channel can be software programmed as the analog trigger channel, including any of the analog expansion channels.</td>
</tr>
<tr>
<td></td>
<td>• Input signal range: -10 V to +10 V maximum</td>
</tr>
<tr>
<td></td>
<td>• Trigger level: Programmable (12-bit resolution)</td>
</tr>
<tr>
<td></td>
<td>• Latency: 350 ns typical, 1.3 µs max</td>
</tr>
<tr>
<td></td>
<td>• Accuracy: ±0.5% of reading, ±2 mV offset maximum</td>
</tr>
<tr>
<td></td>
<td>• Noise: 2 mV RMS typical</td>
</tr>
<tr>
<td>Single channel analog software trigger</td>
<td>Any analog input channel can be selected as the software trigger channel.</td>
</tr>
<tr>
<td></td>
<td>• Input signal range: Anywhere within range of the trigger channel</td>
</tr>
<tr>
<td></td>
<td>• Trigger level: Programmable (16-bit resolution)</td>
</tr>
<tr>
<td></td>
<td>• Latency: One scan period (maximum)</td>
</tr>
<tr>
<td>Single channel digital trigger</td>
<td>A separate digital input is provided for digital triggering (TTLTRG).</td>
</tr>
<tr>
<td></td>
<td>• Input signal range: -15 V to +15 V maximum</td>
</tr>
<tr>
<td></td>
<td>• Trigger level: TTL level sensitive</td>
</tr>
<tr>
<td></td>
<td>• Minimum pulse width: 50 ns high, 50 ns low</td>
</tr>
<tr>
<td></td>
<td>• Latency: One scan period maximum</td>
</tr>
<tr>
<td>Digital pattern triggering</td>
<td>8-bit or 16-bit pattern triggering on any of the digital ports. Programmable for trigger on equal, not equal, above, or below a value.</td>
</tr>
<tr>
<td></td>
<td>• Individual bits can be masked for "don't care" condition.</td>
</tr>
<tr>
<td></td>
<td>• Latency: One scan period, maximum</td>
</tr>
<tr>
<td>Counter/totalizer triggering</td>
<td>Counter/totalizer inputs can trigger an acquisition. User can select to trigger on a frequency or on total counts that are equal, not equal, above, or below a value, or within/outside of a window rising/falling edge.</td>
</tr>
<tr>
<td></td>
<td>• Latency: One scan period, maximum</td>
</tr>
</tbody>
</table>

Frequency/pulse generators

Table 8. Frequency/pulse generator specifications

<table>
<thead>
<tr>
<th>Channels</th>
<th>2 × 16-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output waveform</td>
<td>Square wave</td>
</tr>
<tr>
<td>Output rate</td>
<td>1 MHz base rate divided by 1 to 65535 (programmable)</td>
</tr>
<tr>
<td>High-level output voltage</td>
<td>2.0 V minimum @ -1.0 mA, 2.9 V minimum @ -400 µA</td>
</tr>
<tr>
<td>Low-level output voltage</td>
<td>0.4 V maximum @ 400 µA</td>
</tr>
</tbody>
</table>

Power consumption

Table 9. Power consumption specifications

<table>
<thead>
<tr>
<th>Power consumption (per board)</th>
<th>2.5 W maximum</th>
</tr>
</thead>
</table>

External power

The power supply (MCC p/n TR-2U) and line cord (MCC p/n CA-1) are required.

Table 10. External power specifications

<table>
<thead>
<tr>
<th>Connector</th>
<th>Switchcraft # RAPC-712</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power range</td>
<td>6 to 16 VDC</td>
</tr>
<tr>
<td>Over-voltage</td>
<td>20 V for 10 seconds, maximum</td>
</tr>
</tbody>
</table>
USB specifications

Table 11. USB specifications

<table>
<thead>
<tr>
<th>USB-device type</th>
<th>USB 2.0 high-speed mode (480 Mbps) if available (recommended), otherwise, USB1.1 full-speed mode (12 Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device compatibility</td>
<td>USB 2.0 (recommended) or USB 1.1</td>
</tr>
</tbody>
</table>

Environmental

Table 12. Environmental specifications

<table>
<thead>
<tr>
<th>Operating temperature range</th>
<th>-30 °C to +70 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature range</td>
<td>-40 °C to +80 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>0 to 95% non-condensing</td>
</tr>
</tbody>
</table>

Mechanical

Table 13. Mechanical specifications

<table>
<thead>
<tr>
<th>Vibration</th>
<th>MIL STD 810E category 1 and 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>280 mm W x 216 mm D x 45 mm H (11.0” x 8.5 x 1.75”)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.39 kg (3.06 lbs)</td>
</tr>
</tbody>
</table>

Signal I/O connectors and pin out

Table 14. Screw connector specifications

<table>
<thead>
<tr>
<th>Connector type</th>
<th>Analog inputs: 16 standard BNC female connectors for analog input. Center conductor is high (+), shell is low (-), DIO, AO,CTR, Timer: 37-pin DSUB (See Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatible cables</td>
<td>C37FM-x (x = length in feet)</td>
</tr>
</tbody>
</table>
| Compatible accessories | SCB-37 CIO-MINI37 CIO-MINI37-VERT CIO-TERMINAL
Table 15. USB-1616HS-BNC 37-pin DSUB connector pin out

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELFCAL</td>
<td>Self-calibration. Factory use only. Do not connect.</td>
</tr>
<tr>
<td>2</td>
<td>DAC0</td>
<td>Digital-to-analog converter; analog output 0</td>
</tr>
<tr>
<td>3</td>
<td>AGND</td>
<td>Analog common</td>
</tr>
<tr>
<td>4</td>
<td>TMR1</td>
<td>Timer output 1; 16-bit, frequency pulse generator output</td>
</tr>
<tr>
<td>5</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>6</td>
<td>TMR0</td>
<td>Timer output 0; 16-bit, frequency pulse generator output</td>
</tr>
<tr>
<td>7</td>
<td>TTLTRG</td>
<td>TTL trigger input</td>
</tr>
<tr>
<td>8</td>
<td>CTR2</td>
<td>Counter input, CTR2</td>
</tr>
<tr>
<td>9</td>
<td>CTR0</td>
<td>Counter input, CTR0</td>
</tr>
<tr>
<td>10</td>
<td>Port B – B0</td>
<td>Digital I/O: digital port B, bit 0</td>
</tr>
<tr>
<td>11</td>
<td>Port B – B2</td>
<td>Digital I/O: digital port B, bit 2</td>
</tr>
<tr>
<td>12</td>
<td>Port B – B4</td>
<td>Digital I/O: digital port B, bit 4</td>
</tr>
<tr>
<td>13</td>
<td>Port B – B6</td>
<td>Digital I/O: digital port B, bit 6</td>
</tr>
<tr>
<td>14</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>15</td>
<td>Port A – A0</td>
<td>Digital I/O: digital port A, bit 0</td>
</tr>
<tr>
<td>16</td>
<td>Port A – A2</td>
<td>Digital I/O: digital port A, bit 2</td>
</tr>
<tr>
<td>17</td>
<td>Port A – A4</td>
<td>Digital I/O: digital port A, bit 4</td>
</tr>
<tr>
<td>18</td>
<td>Port A – A6</td>
<td>Digital I/O: digital port A, bit 6</td>
</tr>
<tr>
<td>19</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>20</td>
<td>SGND</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>21</td>
<td>DAC1</td>
<td>Digital to analog converter; analog output 1</td>
</tr>
<tr>
<td>22</td>
<td>AGND</td>
<td>Analog common</td>
</tr>
<tr>
<td>23</td>
<td>+5VDC</td>
<td>+5 VDC power out</td>
</tr>
<tr>
<td>24</td>
<td>XPACR</td>
<td>A/D Pacer clock I/O</td>
</tr>
<tr>
<td>25</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>26</td>
<td>CTR3</td>
<td>Counter input, CTR3</td>
</tr>
<tr>
<td>27</td>
<td>CTR1</td>
<td>Counter input, CTR1</td>
</tr>
<tr>
<td>28</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>29</td>
<td>Port B – B1</td>
<td>Digital I/O: digital port B, bit 1</td>
</tr>
<tr>
<td>30</td>
<td>Port B – B3</td>
<td>Digital I/O: digital port B, bit 3</td>
</tr>
<tr>
<td>31</td>
<td>Port B – B5</td>
<td>Digital I/O: digital port B, bit 5</td>
</tr>
<tr>
<td>32</td>
<td>Port B – B7</td>
<td>Digital I/O: digital port B, bit 7</td>
</tr>
<tr>
<td>33</td>
<td>DGND</td>
<td>Digital common</td>
</tr>
<tr>
<td>34</td>
<td>Port A – A1</td>
<td>Digital I/O: digital port A, bit 1</td>
</tr>
<tr>
<td>35</td>
<td>Port A – A3</td>
<td>Digital I/O: digital port A, bit 3</td>
</tr>
<tr>
<td>36</td>
<td>Port A – A5</td>
<td>Digital I/O: digital port A, bit 5</td>
</tr>
<tr>
<td>37</td>
<td>Port A – A7</td>
<td>Digital I/O: digital port A, bit 7</td>
</tr>
</tbody>
</table>
Declaration of Conformity

Manufacturer: IOTech, Incorporated
Address: 25971 Cannon Road
Cleveland, OH 44146
USA

IOTech, Incorporated declares under sole responsibility that the product

USB-1616HS-BNC

to which this declaration relates is in conformity with the relevant provisions of the following standards or other documents:

Category: Information Technology Equipment.

Emissions: Class B, Radiated and Conducted emissions

Immunity: EN 55024 (1998)

- IEC 61000-4-3 (1997): Radiated Electromagnetic Field immunity Criteria A.
- IEC 61000-4-4 (1995): Electric Fast Transient Burst immunity Criteria B.
- IEC 61000-4-6 (1996): Radio Frequency Common Mode immunity Criteria B.

To maintain the safety, emission, and immunity standards of this declaration, the following conditions must be met:

- The host computer, peripheral equipment, power sources, and expansion hardware must be CE compliant.
- I/O cables must be less than 3 meters (9.75 feet) in length and shielded, with the shields connected to the USB-1616HS-BNC chassis. This connection is to be made via the jack screws of the Digital I/O connector located on the rear panel.
- A TR-2U power supply must be used.

Note: Data acquisition equipment may exhibit noise or increased offsets when exposed to high RF fields (>3V/m) or transients.

Declaration of Conformity based on tests conducted by Chomerics Test Services, Woburn, MA 01801, USA in February, 2008. Test records are outlined in Chomerics Test Report #EMI4958.08.

We hereby declare that the equipment specified conforms to the above Directives and Standards.

[Signature]

Carl Haapaoja, Director of Quality Assurance